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Introduction

• A single security vulnerability from any component of a 
process may lead to the loss of its data confidentiality 
and integrity.


• In-process memory isolation, for instance, Isolating 


• Cryptographic keys in a network server. 


• Managed runtime from unsafe co-linked native library


• Jump table.  

3



Threat Model

• Attacker’s Capabilities:


• Control-flow hijacks


• Memory corruption


• Out of scope:


• Micro-architectural attacks (side channel, row hammer,  
etc)
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Contributions

• ERIM, an efficient memory isolation technique that relies 
on a combination of Intel MPK ISA extension and binary 
inspection.


• ERIM does not require or assume control-flow integrity. 


• A complete rewriting procedure is presented to ensure 
binaries cannot be exploited to circumvent ERIM. 


• ERIM can protect applications with high inter-component 
switching rates with low overhead, unlike existing 
techniques. 
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Background & Related Work

• Most of the following techniques suffer from intolerable 
overhead in high domain switch rate, or need additional 
CFI solutions to provide strong security. 


• OS-Based Techniques


• Virtualization-Based Techniques


• Language and Runtime Techniques


• Hardware-Based Trusted Execution Environments
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OS-Based Techniques
• Isolation can be easily achieved by placing application 

components in separate OS processes. 


• However, this method has high overhead even with a 
moderate of cross-component invocation.


• The following approaches have made Isolating long-term 
signing keys feasible with little overhead:


• Light-weight contexts (lwCs).


• Secure memory views (SVMs). 


• Nested kernels.  
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Virtualization-Based Techniques

• In-process data encapsulation can be provided by a 
hypervisor. 


• Intel VT-x x86 virtualization ISA extensions:


• Several researches use VMFUNC to switch extended 
page tables. 


• SIM relies on VT-x to isolate a security monitor within a 
untrusted guest.


• TrustVisor uses a thin hypervisor and nested page tables 
to support isolation. 
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• Nexen decompose Xen hypervisor into isolated 
components and a security monitor. Control of MMU is 
restricted to the monitor.


• In addition to the overhead of VMFUNC itself, these 
techniques incur overheads on TLB misses and syscalls 
(extended page tables & hypercalls). 

Virtualization-Based Techniques (Cont’d)
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Language and Runtime Techniques

• Memory isolation can be provided as part of a memory-
safe programming language.


• Software Fault Isolation (SFI) provides memory isolation in 
unsafe languages using runtime access checks inserted 
by compiler or by rewriting binaries.


• Even with Intel MPX support, the overhead of bound 
checks is order of tens percent points in many 
applications.


• Control flow integrity. 
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Hardware-Based Trusted Execution Environments

• Intel SGX and ARM TrustZone allow components of 
applications to execute with hardware-enforced isolation. 


• While these method can isolate data even from the OS, 
switching overheads are high.  


• Intel SGX: It costs around 10K of cycles to switch 
between components (ECALLs).
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Hardware-Based Trusted Execution Environments (Cont’d)

• ARM memory domains:


• Domain switching is a privileged instruction. (syscall)


• MPK-based techniques:


• MemSentry is implemented as a pass in LLVM compiler 
toolchain, providing a general framework for data 
encapsulation. 


• However, it does not defense against control flow 
attacks that misuse PKRU-updating instructions.
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Design

• Intel Memory Protection Key (MPK)


• Design Overview


• Threat Model


• Call Gates


• Binary Inspection


• Binary Rewriting


• Developing ERIM Applications
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Intel Memory Protection Key (MPK)

• MPK is a memory 
tagging ISA extension 
available on Skylake 
server CPUs. 


• It tags memory pages 
with a 4 bits PKEY. 


• States in PKRU register 
determine the data 
access right jointly with 
record on the page 
table.
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MPK (Cont’d)
• Each CPU core has a PKRU register. 


• To modify the access permission of a set of pages marked by same 
PKEY:


• WRPKRU: 


• writes PKRU register with EAX. 


• user-space instruction (no mode switch is required). 


• Takes 11-260 cycles/switch. 


• XRSTROE 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Design Overview

• Goals:
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Design Overview (Cont’d)
• Preventing exploitation: Occurrences of WRPKRU instruction 

sequence on executable pages may be exploited by control 
flow hijacks. 


• By binary inspections, the author states that an occurrence 
of  WRPKRU is safe if it is immediately followed by:


• A pre-designated entry point of  .


• A sequence of instructions that checks that the 
permissions set by WRPKRU do not include access to 




• Creating safe binaries: the author uses a binary rewriting 
scheme that rewrite any unsafe occurrence of WRPKRU. 
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Threat Model
• There is no assumption about the untrusted component 




• ERIM assumes that the trusted component ’s binary 
does not have such vulnerabilities and explicit information 
leaks.


• ERIM assumes that the kernel enforces standard DEP. 


• Side-channel, row hammer attacks and micro 
architectural attacks are beyond the scope of this work. 


• Current prototype is incompatible with apps that 
simultaneously use MPK for other purposes.  

U
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Call Gates
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Unsafe Occurrence

• An occurrence of WRPKRU is 
considered “unsafe” if it is not 
immediately followed by:


• a call to a designated entry point. 


• a check to confirm that it does not 
guarantee access to  .MT
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Binary Inspection

• An inspection function that verifies 
that a sequence of pages does not 
contain unsafe occurrences.


• Symbol table is needed to 
determine the entry points. 


• An interception mechanism that 
prevents  from mapping executable 
pages without inspection. 


• Using ptrace, bpf, or a LSM. 

U

21

T

Software 
Components (Code)

U

Designated 
Entry points

Unsafe WRPKRU



Binary Rewriting
• Byte sequence of WRPKRU: 0x0F01EF


• This sequence may:


1. span two or more instructions.


2. Appear entirely within a longer instruction.


• Eliminate unsafe occurrences of WRPKRU by binary rewriting at


• compile time. 


• runtime prior to the execution. 


• Static binary rewriting for pre-compiled binaries.  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Rewriting Scheme (1)

• Rewriting rule for inter-instruction WRPKRU: 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Rewriting Scheme (2)

• If the sequence appears within an instruction, the 
rewriting rule depends on where WRPKRU locates. 


• Opcode


• AddrMode


• SIB


• Displacement (Immediate)
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Rewriting Scheme (2-1)

• If WRPKRU appears in the entire Opcode sequence, the 
instruction itself is WRPKRU. 


Insert the corresponding checks.  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Rewriting Scheme (2-2)

• If WRPKRU overlaps with AddrMode:


Change to a free register


push/pop 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Rewriting Scheme (2-3)

• If WRPKRU overlaps with displacement or immediate 
fields: 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call [rip+0x0F01EF00] Move the code code segment

add eax, 0x0F01EF00

push ebx
mov  ebx, 0x0F010000
add  ebx, 0x0000EF00
add  eax, ebx
pop  ebx



Implementations

• Dynamic:


• Use direct jump to perform in-place rewriting. 


• Static:


• Use Dyninst to disassemble and rewrite those 
occurrences. 


• 1213 occurrences were found and rewritten over 
204k of binaries. 
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Developing ERIM Applications

• Binary-only approach


• LD_PRELOAD


•  must be a dynamic symbol in the binary. 


• Source approach


• Compiler approach


• makes arbitrary inlining possible. 

T
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Developing ERIM Applications
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Evaluation

• Microbenchmarks


• Use Cases


• Comparing to Existing Techniques
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Microbenchmarks

• Switch cost: 
 
 
 
 

• Binary inspection:


• 3.5~6.2 microseconds per page. 
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Use Cases

• Protecting session keys in NGINX


• Isolating managed runtimes


• Protecting sensitive data in CPI/CPS
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• Single worker:

Protecting session keys in NGINX
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• Scaling with multiple workers:

Protecting session keys in NGINX
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• Protecting sensitive data in CPI/CPS



• Overhead becomes noticeable when switching rate 
exceed 106

Protecting sensitive data in CPI/CPS
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Comparing to Existing Techniques

• SFI unsung MPX 


• Hardware bound checking


• VMFUNC 


• Hypervisor-based extended page table


• LwC


• Separate address space in the same process
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Comparing to Existing Techniques

• MPX imposes an overhead during the execution of NGINX 
(compartment )


• ERIN imposes an overhead on component switches. 

U
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Comparing to Existing Techniques

• VMFUNC EPT switch is faster than an OS process switch


• The use of EPT also induces an overhead on all syscalls 
and page walks in the VMFUNC isolation. 
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Conclusion

• ERIM provides hardware-enforced isolation with an 
overhead of less than 1% for every 100k switches/s 
between components.


• ERIM switch cost is up to two orders of magnitude 
lower than that of kernel-page table isolation, and


•  Up to 3-5x lower than that of VMFUNC-based 
isolation. 
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