
ERIM: Secure, Efficient In-process
Isolation with Protection Keys (MPK)

USENIX 2019

Anjo Vahldiek-Oberwagner

Eslam Elnikety

Nuno O. Duarte

Michael Sammler

Peter Druschel

Deepak Garg

From Max Planck Institute for Software Systems, Saarland Informatics Campus

Outline

• Introduction

• Background & Related Work

• Design

• Evaluation

• Conclusion

2

Introduction

• A single security vulnerability from any component of a
process may lead to the loss of its data confidentiality
and integrity.

• In-process memory isolation, for instance, Isolating

• Cryptographic keys in a network server.

• Managed runtime from unsafe co-linked native library

• Jump table.

3

Threat Model

• Attacker’s Capabilities:

• Control-flow hijacks

• Memory corruption

• Out of scope:

• Micro-architectural attacks (side channel, row hammer,
etc)

4

Contributions

• ERIM, an efficient memory isolation technique that relies
on a combination of Intel MPK ISA extension and binary
inspection.

• ERIM does not require or assume control-flow integrity.

• A complete rewriting procedure is presented to ensure
binaries cannot be exploited to circumvent ERIM.

• ERIM can protect applications with high inter-component
switching rates with low overhead, unlike existing
techniques.

5

Background & Related Work

• Most of the following techniques suffer from intolerable
overhead in high domain switch rate, or need additional
CFI solutions to provide strong security.

• OS-Based Techniques

• Virtualization-Based Techniques

• Language and Runtime Techniques

• Hardware-Based Trusted Execution Environments

6

OS-Based Techniques
• Isolation can be easily achieved by placing application

components in separate OS processes.

• However, this method has high overhead even with a
moderate of cross-component invocation.

• The following approaches have made Isolating long-term
signing keys feasible with little overhead:

• Light-weight contexts (lwCs).

• Secure memory views (SVMs).

• Nested kernels.

7

Untrusted Trusted

IPC
mmap

Process

Processes
lwCs
SMVs

Virtualization-Based Techniques

• In-process data encapsulation can be provided by a
hypervisor.

• Intel VT-x x86 virtualization ISA extensions:

• Several researches use VMFUNC to switch extended
page tables.

• SIM relies on VT-x to isolate a security monitor within a
untrusted guest.

• TrustVisor uses a thin hypervisor and nested page tables
to support isolation.

8

• Nexen decompose Xen hypervisor into isolated
components and a security monitor. Control of MMU is
restricted to the monitor.

• In addition to the overhead of VMFUNC itself, these
techniques incur overheads on TLB misses and syscalls
(extended page tables & hypercalls).

Virtualization-Based Techniques (Cont’d)

9

Trusted

Hypervisor

Unrusted

VMFUNC

Language and Runtime Techniques

• Memory isolation can be provided as part of a memory-
safe programming language.

• Software Fault Isolation (SFI) provides memory isolation in
unsafe languages using runtime access checks inserted
by compiler or by rewriting binaries.

• Even with Intel MPX support, the overhead of bound
checks is order of tens percent points in many
applications.

• Control flow integrity.

10

Memory-safe
language runtime

lib written in
unsafe

language
Bound checking

Acesses

Bound checking

Acesses

Hardware-Based Trusted Execution Environments

• Intel SGX and ARM TrustZone allow components of
applications to execute with hardware-enforced isolation.

• While these method can isolate data even from the OS,
switching overheads are high.

• Intel SGX: It costs around 10K of cycles to switch
between components (ECALLs).

11

Hardware-Based Trusted Execution Environments (Cont’d)

• ARM memory domains:

• Domain switching is a privileged instruction. (syscall)

• MPK-based techniques:

• MemSentry is implemented as a pass in LLVM compiler
toolchain, providing a general framework for data
encapsulation.

• However, it does not defense against control flow
attacks that misuse PKRU-updating instructions.

12

Design

• Intel Memory Protection Key (MPK)

• Design Overview

• Threat Model

• Call Gates

• Binary Inspection

• Binary Rewriting

• Developing ERIM Applications

13

Intel Memory Protection Key (MPK)

• MPK is a memory
tagging ISA extension
available on Skylake
server CPUs.

• It tags memory pages
with a 4 bits PKEY.

• States in PKRU register
determine the data
access right jointly with
record on the page
table.

14

Address Space

4K page
PKEY=0

4K page
PKEY=0

4K page
PKEY=0

2M page
PKEY=1

4K page
PKEY=1

32-bit PKRU register
PKEY 0
WD AD

Up to 16 PKEYs

MPK (Cont’d)
• Each CPU core has a PKRU register.

• To modify the access permission of a set of pages marked by same
PKEY:

• WRPKRU:

• writes PKRU register with EAX.

• user-space instruction (no mode switch is required).

• Takes 11-260 cycles/switch.

• XRSTROE 
 
 

15

4K page
PKEY=0

4K page
PKEY=0

4K page
PKEY=0

2M page
PKEY=1

4K page
PKEY=1

32-bit PKRU register
PKEY 0
WD AD

Up to 16 PKEYs

Design Overview

• Goals:

16

MT

MU

Memory (Data)

T

Software
Components (Code)

U

Designated
Entry points

Design Overview (Cont’d)
• Preventing exploitation: Occurrences of WRPKRU instruction

sequence on executable pages may be exploited by control
flow hijacks.

• By binary inspections, the author states that an occurrence
of WRPKRU is safe if it is immediately followed by:

• A pre-designated entry point of .

• A sequence of instructions that checks that the
permissions set by WRPKRU do not include access to

• Creating safe binaries: the author uses a binary rewriting
scheme that rewrite any unsafe occurrence of WRPKRU.

T

MT

17

Threat Model
• There is no assumption about the untrusted component

• ERIM assumes that the trusted component ’s binary
does not have such vulnerabilities and explicit information
leaks.

• ERIM assumes that the kernel enforces standard DEP.

• Side-channel, row hammer attacks and micro
architectural attacks are beyond the scope of this work.

• Current prototype is incompatible with apps that
simultaneously use MPK for other purposes.

U

T

18

Call Gates

19

Unsafe Occurrence

• An occurrence of WRPKRU is
considered “unsafe” if it is not
immediately followed by:

• a call to a designated entry point.

• a check to confirm that it does not
guarantee access to .MT

20

T

Software
Components (Code)

U

Designated
Entry points

Unsafe WRPKRU

Binary Inspection

• An inspection function that verifies
that a sequence of pages does not
contain unsafe occurrences.

• Symbol table is needed to
determine the entry points.

• An interception mechanism that
prevents from mapping executable
pages without inspection.

• Using ptrace, bpf, or a LSM.

U

21

T

Software
Components (Code)

U

Designated
Entry points

Unsafe WRPKRU

Binary Rewriting
• Byte sequence of WRPKRU: 0x0F01EF

• This sequence may:

1. span two or more instructions.

2. Appear entirely within a longer instruction.

• Eliminate unsafe occurrences of WRPKRU by binary rewriting at

• compile time.

• runtime prior to the execution.

• Static binary rewriting for pre-compiled binaries.  
 
 

22

Rewriting Scheme (1)

• Rewriting rule for inter-instruction WRPKRU: 
 
 
 
 
 
 
 
 
 

23

Rewriting Scheme (2)

• If the sequence appears within an instruction, the
rewriting rule depends on where WRPKRU locates.

• Opcode

• AddrMode

• SIB

• Displacement (Immediate)

24

Rewriting Scheme (2-1)

• If WRPKRU appears in the entire Opcode sequence, the
instruction itself is WRPKRU.

Insert the corresponding checks.  
 
 
 
 

25

Rewriting Scheme (2-2)

• If WRPKRU overlaps with AddrMode:

Change to a free register

push/pop 
 
 
 
 

26

Rewriting Scheme (2-3)

• If WRPKRU overlaps with displacement or immediate
fields: 
 
 
 
 

27

call [rip+0x0F01EF00] Move the code code segment

add eax, 0x0F01EF00

push ebx
mov ebx, 0x0F010000
add ebx, 0x0000EF00
add eax, ebx
pop ebx

Implementations

• Dynamic:

• Use direct jump to perform in-place rewriting.

• Static:

• Use Dyninst to disassemble and rewrite those
occurrences.

• 1213 occurrences were found and rewritten over
204k of binaries.

28

Developing ERIM Applications

• Binary-only approach

• LD_PRELOAD

• must be a dynamic symbol in the binary.

• Source approach

• Compiler approach

• makes arbitrary inlining possible.

T

29

Developing ERIM Applications

30

Evaluation

• Microbenchmarks

• Use Cases

• Comparing to Existing Techniques

31

Microbenchmarks

• Switch cost: 
 
 
 
 

• Binary inspection:

• 3.5~6.2 microseconds per page.

32

Use Cases

• Protecting session keys in NGINX

• Isolating managed runtimes

• Protecting sensitive data in CPI/CPS

33

• Single worker:

Protecting session keys in NGINX

34

I/O bound

• Scaling with multiple workers:

Protecting session keys in NGINX

35

• Protecting sensitive data in CPI/CPS

• Overhead becomes noticeable when switching rate
exceed 106

Protecting sensitive data in CPI/CPS

36

Comparing to Existing Techniques

• SFI unsung MPX

• Hardware bound checking

• VMFUNC

• Hypervisor-based extended page table

• LwC

• Separate address space in the same process

37

Comparing to Existing Techniques

• MPX imposes an overhead during the execution of NGINX
(compartment)

• ERIN imposes an overhead on component switches.

U

38

Comparing to Existing Techniques

• VMFUNC EPT switch is faster than an OS process switch

• The use of EPT also induces an overhead on all syscalls
and page walks in the VMFUNC isolation.

39

Conclusion

• ERIM provides hardware-enforced isolation with an
overhead of less than 1% for every 100k switches/s
between components.

• ERIM switch cost is up to two orders of magnitude
lower than that of kernel-page table isolation, and

• Up to 3-5x lower than that of VMFUNC-based
isolation.

40

