ERIM: Secure, Efficient In-process
Isolation with Protection Keys (MPK)

USENIX 2019
Anjo Vahldiek-Oberwagner

Eslam Elnikety

Nuno O. Duarte

Michael Sammler
Peter Druschel
Deepak Garg

From Max Planck Institute for Software Systems, Saarland Informatics Campus

Outline

Introduction

Background & Related Work
Design

Evaluation

Conclusion

Application

Introduction

¥

* A single security vulnerability from any component of a

process may lead to the loss of its data confidentiality
and integrity.

* In-process memory isolation, for instance, Isolating
e Cryptographic keys in a network server.

* Managed runtime from unsafe co-linked native library

Managed runtimes from native libraries Cryptographic Secrets

e Jump table.

S Trusted
Native Library Untrusted Crypto Library

Application
Managed a PP
Runtime t

Threat Model

e Attacker’s Capabilities:

Untrusted Application

e Control-flow hijacks Trusted I untrusted
Compartment W Trusted

* Memory corruption

CPU

e Qut of scope:

* Micro-architectural attacks (side channel, row hammer,
etc)

Contributions

ERIM, an efficient memory isolation technique that relies
on a combination of Intel MPK ISA extension and binary
iInspection.

ERIM does not require or assume control-flow integrity.

A complete rewriting procedure is presented to ensure
binaries cannot be exploited to circumvent ERIM.

ERIM can protect applications with high inter-component
switching rates with low overhead, unlike existing
techniques.

Background & Related Work

* Most of the following techniques suffer from intolerable
overhead in high domain switch rate, or need additional
CFI solutions to provide strong security.

e OS-Based Techniques
* Virtualization-Based Techniques
 Language and Runtime Techniques

e Hardware-Based Trusted Execution Environments

OS-Based Techniques

* |solation can be easily achieved by placing application
components in separate OS processes.

* However, this method has high overhead even with a
moderate of cross-component invocation.

* The following approaches have made Isolating long-term

signing keys feasible with little overhead: Processes

IwCs

e Light-weight contexts (IwCs). ~ Process |pg SMVs

mmap

e Secure memory views (SVMs). =

e Nested kernels.

Virtualization-Based Techniques

* |n-process data encapsulation can be provided by a
hypervisor.

e |ntel VT-x x86 virtualization ISA extensions:

e Several researches use VMFUNC to switch extended
page tables.

 SIM relies on VT-x to isolate a security monitor within a
untrusted guest.

e TrustVisor uses a thin hypervisor and nested page tables
to support isolation.

Virtualization-Based Techniques (Cont’d)

* Nexen decompose Xen hypervisor into isolated
components and a security monitor. Control of MMU is
restricted to the monitor.

 |n addition to the overhead of VMFUNC itself, these
technigues incur overheads on TLB misses and syscalls

(extended page tables & hypercalls). VMFUNC
<+

Language and Runtime Techniques

* Memory isolation can be provided as part of a memory-
safe programming language.

e Software Fault Isolation (SFI) provides memory isolation in
unsafe languages using runtime access checks inserted
by compiler or by rewriting binaries.

 Even with Intel MPX support, the overhead of bound
checks is order of tens percent points in many
applications.

lib written in
unsafe
language

Bound checking

e Control flow integrity. S

Bound checking

Memory-safe

Acesses -
language runtime

10

Hardware-Based Trusted Execution Environments

e |ntel SGX and ARM TrustZone allow components of
applications to execute with hardware-enforced isolation.

e While these method can isolate data even from the OS,
switching overheads are high.

e |Intel SGX: It costs around 10K of cycles to switch
between components (ECALLS).

11

Hardware-Based Trusted Execution Environments (Cont’d)

e ARM memory domains:
 Domain switching is a privileged instruction. (syscall)
* MPK-based technigues:

e MemSentry is implemented as a pass in LLVM compiler
toolchain, providing a general framework for data
encapsulation.

* However, it does not defense against control flow
attacks that misuse PKRU-updating instructions.

12

Design

Intel Memory Protection Key (MPK)
Design Overview

Threat Model

Call Gates

Binary Inspection

Binary Rewriting

Developing ERIM Applications

13

Intel Memory Protection Key (MPK)

Address Space

* MPK is a memory
tagging ISA extension
available on Skylake
server CPUs. 32-bit PKRU register

PKEY 0
Up to 16 PKEYs
* |t tags memory pages WD|AD

with a 4 bits PKEY.

e States in PKRU register
determine the data
access right jointly with
record on the page

table' 5|6(6[5'5/5[5|5[5[5/5[5 M! [M-1 3(3(3[2(2[2[2[2]2[2|2]2[2[1|T[T|T[T[T|T][T|T1]1
3/2/1|0|< 8(7|6/5|4(3|2|1 2/1/0(/9/8|7|6/5|4|3(2|1|0(9/8|7|6|5|4/3|2(1|0|9(8/|7|6|5(4|3|2|1|0
X% prot Pl | [PIPI,[R PTE:
D K 4 Ignored Rsvd. Address of 4KB page frame Ign. |G ADACW/S/ 1| 4KB
3. Key | T D|T[-|W page

14

MPK (Cont’d)

 Each CPU core has a PKRU register.

* To modify the access permission of a set of pages marked by same
PKEY:

* WRPKRU:

* writes PKRU register with EAX.

e user-space instruction (no mode switch is required).

e Takes 11-260 cycles/switch.
PKEY=0

4K page

e XRSTROE PKEY=0
4K page
PKEY=0

32-bit PKRU register

PKEY 0
Up to 16 PKEYs 4K page
WD|AD PKEY=1

15

Design Overview

Software
Components (Code) Memory (Data)

e Goals:
Designated

Entry points

16

Design Overview (Cont’d)

* Preventing exploitation: Occurrences of WRPKRU instruction
seguence on executable pages may be exploited by control
flow hijacks.

* By binary inspections, the author states that an occurrence
of WRPKRU is safe if it is immediately followed by:

e A pre-designated entry point of 1.

A sequence of instructions that checks that the
permissions set by WRPKRU do not include access to

M7

e Creating safe binaries: the author uses a binary rewriting
scheme that rewrite any unsafe occurrence of WRPKRU.

17

Threat Model

There is no assumption about the untrusted component
U

ERIM assumes that the trusted component 1’s binary
does not have such vulnerabilities and explicit information
leaks.

ERIM assumes that the kernel enforces standard DEP.

Side-channel, row hammer attacks and micro
architectural attacks are beyond the scope of this work.

Current prototype is incompatible with apps that
simultaneously use MPK for other purposes.

18

Call Gates

XOr ecxX, ecx 1
Xor edx, edx 2
mov PKRU_ALLOW_TRUSTED, eax 3
WRPKRU // copies eax to PKRU 4
// Execute trusted component’s code 6
XOr ecxX, ecx 8
Xxor edx, edx 9
mov PKRU_DISALLOW_TRUSTED, eax 10
WRPKRU // copies eax to PKRU 11
cmp PKRU DISALLOW_TRUSTED, eax 12
je continue 13
syscall exit // terminate program 14
continue: 15
// control returns to the untrusted 16

application here

19

Unsafe Occurrence

Software
Components (Code)

e An occurrence of WRPKRU is
considered “unsafe” if it is not

immediately followed by: Unsafe WRPKRU

e acall to a designated entry point. | REElEEEE

Entry points

e a check to confirm that it does not
guarantee access to M.

20

Binary Inspection

* An inspection function that verifies Software
that a sequence of pages does not Components (Code)

contain unsafe occurrences.

e Symbol table is needed to Unsafe WRPKRU
determine the entry points.
Designa_ted
e An interception mechanism that SRS

prevents U from mapping executable
pages without inspection.

e Using ptrace, bpf, or a LSM.

21

Binary Rewriting
e Byte sequence of WRPKRU: OxOFO1EF
* This sequence may:
1. span two or more instructions.
2. Appear entirely within a longer instruction.
e Eliminate unsafe occurrences of WRPKRU by binary rewriting at
e compile time.
* runtime prior to the execution.

e Static binary rewriting for pre-compiled binaries.

Inter-Instruction WRPKRU Intra-Instruction WRPKRU

Instruction 1 Instruction 2 Instruction 1

...OF O1EF... 010FO1EFOO00O0

22

Rewriting Scheme (1)

e Rewriting rule for inter-instruction WRPKRU:

Instruction 1 Instruction 2

...OF O1EF..

v

...OF 90 O1lEF..
Nop

23

Rewriting Scheme (2)

* |f the sequence appears within an instruction, the
rewriting rule depends on where WRPKRU locates.

General Opcode Structure

N N N N N N
Element Prefix Opcode AddrMode SIB Byte Displacement | | Immediate Data
Information (mod, reg, r/m) (scale, index, base)
of bytes 0-4 || 1-3 \ 0-1 | 0-1) 0/172/4 | \ 0/1/2/4 |
' M[M[R[R[R rIRIR : |
Bit structure 0|0 0|0|0|O DL OOEEEMMM S|S|I|I|I B|B/B
) |D|D|G|G|G -
A A) kﬂ N A —)
[L+ Base field
Main Opcode bits Index field
Direction bit » Scale field
r/m field

Operand length bit «

» Register/Opcode modifier, defined by primary opcode
» Addressing mode

24

Rewriting Scheme (2-1)

e |f WRPKRU appears in the entire Opcode sequence, the

instruction itself is WRPKRU.

- Insert the corresponding chec

KS.

General Opcode Structure

4 ~N /7 ~N N

\ ./ N '/ \\
Element Prefix Opcode AddrMode SIB Byte) Displacement | | Immediate Data
Information (mod, reg, r/m) (scale, index, base)
of bytes 0-4 1-3 \ 0-1 0-1 - 0/1/2/4 0/1/2/4
/N / \ /N
M[M|R|R[R rIRIR : |
Bit structure 0|0 0|0|0|OD|L OOEEEMMM S|S|I|I|I B|B|B
) DJD/G|G|G -
l\ e fﬁk N A P / l_\ ,_k A 7 J
[L+ Base field
Main Opcode bits Index field
Direction bit _ » Scale field
Operand length bit < r/m field
» Register/Opcode modifier, defined by primary opcode

» Addressing mode

25

Rewriting Scheme (2-2)

e |[f WRPKRU overlaps with AddrMode:

> Change to a free register

> push/pop
Addressing Modes
mod 00 01 10 11
r/m 16bit | 32bit 16bit 32bit 16bit 32bit r/m // REG
000 | (Bx+SI] | [EAX] | [BX+Sl}+disp8 | [EAX]+disp8 | [BX+Sl]+disp16 | [EAX]+disp32 AL / AX / EAX
001 | Bx+D1 | [ECX] | [BX+DIj+disp8 | [ECX]+disp8 | [BX+DI]+disp16 | [ECX]+disp32 CL / CX / ECX
010 | (BP+SI) | [EDX] | [BP+SI)+disp8 | [EDX]+disp8 | [BP+Sl]+disp16 | [EDX]+disp32 DL / DX / EDX
011 | BP+DI] | [EBX] | [BP+DIJ+disp8 | [EBX]+disp8 | [BP+DI]+disp16 | [EBX]+disp32 BL / BX / EBX
100 [S1] SIB [Sl]+disp8 SIB+disp8 [Sl]+disp16 SIB+disp32 AH / SP / ESP
101 | v lacnan |l mmvilidice |l eBD1dicce | i liande | meplidicces | AU /DD 7 DD

Rewriting Scheme (2-3)

e |[f WRPKRU overlaps with displacement or immediate
fields:

call [rip+0xO0FO01EF00] Move the code code segment
push ebx
mov ebx, 0x0F010000
add eax, O0xOFO1lEFO0O add ebx, 0x0000EFO0O0

add eax, ebx
pop ebx

27

Implementations

 Dynamic:
e Use direct jump to perform in-place rewriting.
e Static:

 Use Dyninst to disassemble and rewrite those
occurrences.

e 1213 occurrences were found and rewritten over
204Kk of binaries.

28

Developing ERIM Applications

* Binary-only approach
e | D PRELOAD
e | must be a dynamic symbol in the binary.

e Source approach
e Compiler approach

* makes arbitrary inlining possible.

29

Developing ERIM Applications

typedef struct secret {
int number; } secret;

secretx 1nitSecret () {

‘secret x* s = malloc(sizeof (secret));

s—>number = random() ;

ERIM _SWITCH Uj; — .

“return s;

O oo O\ LD W N =

}

int compute (secret* s, int m) { 10
int ret = 0; 11
ERIM _SWITCH_T,; 12
ret = f(s—->number, m); 13
ERIM_SWITCH_U; 14
return ret; 15

} 16

30

Evaluation

e Microbenchmarks
e Use Cases

e Comparing to Existing Techniques

31

Microbenchmarks

Call type Cost (cycles)
Inlined call (no switch) 5
e Switch cost: Direct call (no switch) 8
Indirect call (no switch) 19
Inlined call + switch 60
Direct call + switch 69
Indirect call + switch 99
getpid system call 152
Call + VMFUNC EPT switch 332
IwC switch [33] (Skylake CPU) 6050

* Binary inspection:

e 3.5~6.2 microseconds per page.

32

Use Cases

e Protecting session keys in NGINX
e |solating managed runtimes

e Protecting sensitive data in CPI/CPS

33

Protecting session keys in NGINX

e Single worker:

File Throughput . CPU load

size Native gEII){IM Switches/s native

(KB) (req/s) rel. (%) (%)
0 95,761 5.8 | 1 100.0
1 87,022 { 100.0
2 82,137 1,151,877 | 100.0
4 [76562 | 953 | 1073843 | 100.0
8 67,855 | 96.0 974,780 | 100.0
16 45,483 97.1 820,534 100.0
32 32,381 97.3 779,141 100.0
128 8,937 100.0 556,152 86.4

34

Protecting session keys in NGINX

e Scaling with multiple workers:

File 1 worker 3 workers 5 workers 10 workers
size Native ERIM Native ERIM Native ERIM Native ERIM
(KB) (req/s) rel. (%) (req/s) rel. (%) (req/s) rel. (%) (req/s) rel. (%)

0 95,761 95.8 276,736 | 96.1 466,419 | 95.7 823,471 96.4

1 87,022 95.2 250,565 | 94.5 421,656 | 96.1 746,278 | 95.5

2 82,137 954 235,820 | 95.1 388,926 | 96.6 497,778 100.0

4 76,562 95.3 217,602 | 94.9 263,719 100.0

3 67,855 96.0 142,680 100.0

* Protecting sensitive data in CPI/CPS

35

Protecting sensitive data in CPI/CPS

 Overhead becomes noticeable when switching rate
exceed 10°

Benchmark Switches/sec ERIM_CPI. overhe.ad
relative to orig. CPI in %

403.gcc 16,454,595 22.30%
445.gobmk 1,074,716 1.77%

447 .dealll 1,277,645 0.56%
450.soplex 410,649 0.60%
464.h264ref 1,705,131 1.22%
471.omnetpp 89,260,024 144.02%
482.sphinx3 1,158,495 0.84%
483.xalancbmk | 32,650,497 52.22%

36

Comparing to Existing Techniques

e SFl unsung MPX

* Hardware bound checking
e VMFUNC

 Hypervisor-based extended page table
e LwC

» Separate address space in the same process

37

Comparing to Existing Techniques

ERIM @ MPX =

3

c 1

(@))

3 0.8

= 0.6

©

_&J 0.4

< 0.2

£

> 0 SIS BN JRRS
PN P W o G 9P GO P

File size

e MPX imposes an overhead during the execution of NGINX
(compartment U)

* ERIN imposes an overhead on component switches.

38

Comparing to Existing Techniques

ERIM emulation = VMFUNC = ERIM emulation = LwC B

Normalized Throughput

Normalized Throughput

File size

* VMFUNC EPT switch is faster than an OS process switch

* The use of EPT also induces an overhead on all syscalls
and page walks in the VMFUNC isolation.

39

Conclusion

 ERIM provides hardware-enforced isolation with an
overhead of less than 1% for every 100k switches/s
between components.

 ERIM switch cost is up to two orders of magnitude
lower than that of kernel-page table isolation, and

e Up to 3-5x lower than that of VMFUNC-based
Isolation.

40

